direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×D36, C36⋊2C23, D18⋊1C23, C18.3C24, C23.40D18, (C2×C18)⋊6D4, (C2×C4)⋊9D18, C18⋊1(C2×D4), C9⋊1(C22×D4), (C22×C4)⋊7D9, C4⋊2(C22×D9), C3.(C22×D12), (C22×C36)⋊7C2, C6.47(C2×D12), (C2×C6).37D12, (C23×D9)⋊3C2, C2.4(C23×D9), (C2×C36)⋊12C22, (C2×C12).380D6, C6.40(S3×C23), (C22×C12).22S3, (C2×C18).64C23, (C22×C6).148D6, (C22×D9)⋊5C22, C12.186(C22×S3), C22.30(C22×D9), (C22×C18).45C22, (C2×C6).221(C22×S3), SmallGroup(288,354)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×D36
G = < a,b,c,d | a2=b2=c36=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 1784 in 354 conjugacy classes, 132 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C9, C12, D6, C2×C6, C22×C4, C2×D4, C24, D9, C18, C18, D12, C2×C12, C22×S3, C22×C6, C22×D4, C36, D18, D18, C2×C18, C2×D12, C22×C12, S3×C23, D36, C2×C36, C22×D9, C22×D9, C22×C18, C22×D12, C2×D36, C22×C36, C23×D9, C22×D36
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, D9, D12, C22×S3, C22×D4, D18, C2×D12, S3×C23, D36, C22×D9, C22×D12, C2×D36, C23×D9, C22×D36
(1 133)(2 134)(3 135)(4 136)(5 137)(6 138)(7 139)(8 140)(9 141)(10 142)(11 143)(12 144)(13 109)(14 110)(15 111)(16 112)(17 113)(18 114)(19 115)(20 116)(21 117)(22 118)(23 119)(24 120)(25 121)(26 122)(27 123)(28 124)(29 125)(30 126)(31 127)(32 128)(33 129)(34 130)(35 131)(36 132)(37 100)(38 101)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)(52 79)(53 80)(54 81)(55 82)(56 83)(57 84)(58 85)(59 86)(60 87)(61 88)(62 89)(63 90)(64 91)(65 92)(66 93)(67 94)(68 95)(69 96)(70 97)(71 98)(72 99)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 37)(19 38)(20 39)(21 40)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 48)(30 49)(31 50)(32 51)(33 52)(34 53)(35 54)(36 55)(73 123)(74 124)(75 125)(76 126)(77 127)(78 128)(79 129)(80 130)(81 131)(82 132)(83 133)(84 134)(85 135)(86 136)(87 137)(88 138)(89 139)(90 140)(91 141)(92 142)(93 143)(94 144)(95 109)(96 110)(97 111)(98 112)(99 113)(100 114)(101 115)(102 116)(103 117)(104 118)(105 119)(106 120)(107 121)(108 122)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 9)(2 8)(3 7)(4 6)(10 36)(11 35)(12 34)(13 33)(14 32)(15 31)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)(37 47)(38 46)(39 45)(40 44)(41 43)(48 72)(49 71)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)(57 63)(58 62)(59 61)(73 101)(74 100)(75 99)(76 98)(77 97)(78 96)(79 95)(80 94)(81 93)(82 92)(83 91)(84 90)(85 89)(86 88)(102 108)(103 107)(104 106)(109 129)(110 128)(111 127)(112 126)(113 125)(114 124)(115 123)(116 122)(117 121)(118 120)(130 144)(131 143)(132 142)(133 141)(134 140)(135 139)(136 138)
G:=sub<Sym(144)| (1,133)(2,134)(3,135)(4,136)(5,137)(6,138)(7,139)(8,140)(9,141)(10,142)(11,143)(12,144)(13,109)(14,110)(15,111)(16,112)(17,113)(18,114)(19,115)(20,116)(21,117)(22,118)(23,119)(24,120)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,98)(72,99), (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,131)(82,132)(83,133)(84,134)(85,135)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,109)(96,110)(97,111)(98,112)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(105,119)(106,120)(107,121)(108,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(37,47)(38,46)(39,45)(40,44)(41,43)(48,72)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(73,101)(74,100)(75,99)(76,98)(77,97)(78,96)(79,95)(80,94)(81,93)(82,92)(83,91)(84,90)(85,89)(86,88)(102,108)(103,107)(104,106)(109,129)(110,128)(111,127)(112,126)(113,125)(114,124)(115,123)(116,122)(117,121)(118,120)(130,144)(131,143)(132,142)(133,141)(134,140)(135,139)(136,138)>;
G:=Group( (1,133)(2,134)(3,135)(4,136)(5,137)(6,138)(7,139)(8,140)(9,141)(10,142)(11,143)(12,144)(13,109)(14,110)(15,111)(16,112)(17,113)(18,114)(19,115)(20,116)(21,117)(22,118)(23,119)(24,120)(25,121)(26,122)(27,123)(28,124)(29,125)(30,126)(31,127)(32,128)(33,129)(34,130)(35,131)(36,132)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,98)(72,99), (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,131)(82,132)(83,133)(84,134)(85,135)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,109)(96,110)(97,111)(98,112)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(105,119)(106,120)(107,121)(108,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(37,47)(38,46)(39,45)(40,44)(41,43)(48,72)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(57,63)(58,62)(59,61)(73,101)(74,100)(75,99)(76,98)(77,97)(78,96)(79,95)(80,94)(81,93)(82,92)(83,91)(84,90)(85,89)(86,88)(102,108)(103,107)(104,106)(109,129)(110,128)(111,127)(112,126)(113,125)(114,124)(115,123)(116,122)(117,121)(118,120)(130,144)(131,143)(132,142)(133,141)(134,140)(135,139)(136,138) );
G=PermutationGroup([[(1,133),(2,134),(3,135),(4,136),(5,137),(6,138),(7,139),(8,140),(9,141),(10,142),(11,143),(12,144),(13,109),(14,110),(15,111),(16,112),(17,113),(18,114),(19,115),(20,116),(21,117),(22,118),(23,119),(24,120),(25,121),(26,122),(27,123),(28,124),(29,125),(30,126),(31,127),(32,128),(33,129),(34,130),(35,131),(36,132),(37,100),(38,101),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78),(52,79),(53,80),(54,81),(55,82),(56,83),(57,84),(58,85),(59,86),(60,87),(61,88),(62,89),(63,90),(64,91),(65,92),(66,93),(67,94),(68,95),(69,96),(70,97),(71,98),(72,99)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,37),(19,38),(20,39),(21,40),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,48),(30,49),(31,50),(32,51),(33,52),(34,53),(35,54),(36,55),(73,123),(74,124),(75,125),(76,126),(77,127),(78,128),(79,129),(80,130),(81,131),(82,132),(83,133),(84,134),(85,135),(86,136),(87,137),(88,138),(89,139),(90,140),(91,141),(92,142),(93,143),(94,144),(95,109),(96,110),(97,111),(98,112),(99,113),(100,114),(101,115),(102,116),(103,117),(104,118),(105,119),(106,120),(107,121),(108,122)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,9),(2,8),(3,7),(4,6),(10,36),(11,35),(12,34),(13,33),(14,32),(15,31),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24),(37,47),(38,46),(39,45),(40,44),(41,43),(48,72),(49,71),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64),(57,63),(58,62),(59,61),(73,101),(74,100),(75,99),(76,98),(77,97),(78,96),(79,95),(80,94),(81,93),(82,92),(83,91),(84,90),(85,89),(86,88),(102,108),(103,107),(104,106),(109,129),(110,128),(111,127),(112,126),(113,125),(114,124),(115,123),(116,122),(117,121),(118,120),(130,144),(131,143),(132,142),(133,141),(134,140),(135,139),(136,138)]])
84 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 3 | 4A | 4B | 4C | 4D | 6A | ··· | 6G | 9A | 9B | 9C | 12A | ··· | 12H | 18A | ··· | 18U | 36A | ··· | 36X |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 9 | 9 | 9 | 12 | ··· | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | ··· | 1 | 18 | ··· | 18 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
84 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D9 | D12 | D18 | D18 | D36 |
kernel | C22×D36 | C2×D36 | C22×C36 | C23×D9 | C22×C12 | C2×C18 | C2×C12 | C22×C6 | C22×C4 | C2×C6 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 2 | 1 | 4 | 6 | 1 | 3 | 8 | 18 | 3 | 24 |
Matrix representation of C22×D36 ►in GL6(𝔽37)
36 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
36 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 5 | 0 | 0 |
0 | 0 | 32 | 27 | 0 | 0 |
0 | 0 | 0 | 0 | 26 | 31 |
0 | 0 | 0 | 0 | 6 | 20 |
36 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 36 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 20 |
0 | 0 | 0 | 0 | 26 | 31 |
G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,32,0,0,0,0,5,27,0,0,0,0,0,0,26,6,0,0,0,0,31,20],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,36,1,0,0,0,0,0,0,6,26,0,0,0,0,20,31] >;
C22×D36 in GAP, Magma, Sage, TeX
C_2^2\times D_{36}
% in TeX
G:=Group("C2^2xD36");
// GroupNames label
G:=SmallGroup(288,354);
// by ID
G=gap.SmallGroup(288,354);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,675,80,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^36=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations